c# - How to make calculation on time intervals? -


i have problem ,i solve have written long procedure , can't sure covers possible cases .

the problem:

if have main interval time (from b), , secondary interval times (many or no)

(`from x y , x` y` , x``  y`` , ....`)  

i want sum parts of main interval time (ab) out of secondary intervals in minutes in efficient , least number of conditions (sql server procedure , c# method)?

for example : if main interval 02:00 10:30 , 1 secondary interval 04:00 08:00

now want result : ((04:00 - 02:00) + (10:30 -08:00))* 60

example graph :

in first case result :

((x-a) + (b-y)) * 60 

and more complicated when have many secondary periods.

note:

may overlap among secondary intervals happening when have compare main period [a,b] union of at 2 parallel sets of secondary intervals .the first set have contain 1 secondary interval , the second set contains (many or no ) of secondary intervals .for example in graph comparing [a,b] (sets of 2,5)the first set (2) consists of 1 secondary interval , second set (5) consists of 3 secondary intervals . , 's worst case ,i need handle.

for example :

if main interval [15:00,19:40] , have 2 sets of secondary intervals .according rule @ least 1 of these sets should consists of 1 secondary interval. first set [11:00 ,16:00] , second set consists of 2 secondary intervals [10:00,15:00],[16:30,17:45] want result (16:30 -16:00) +(19:40 -17:45)


according comments :

my table :

the first table contains secondary periods ,at 2 sets of secondary periods in same date specific employee. first set contains 1 secondary period in work day (w) [work_st,work_end],and set empty if day weekend [e] , in case no overlap among secondary periods. , second set may contain many secondary periods in same date [check_in,check_out] ,because employee may check_in_out many times in same day.

emp_num  day_date   work_st    work_end   check_in   check_out     day_state    547    2015-4-1   08:00       16:00     07:45      12:10           w   547    2015-4-1   08:00       16:00     12:45      17:24           w   547    2015-4-2   00:00       00:00     07:11      13:11           e 

the second table contains main period[a,b] , it's 1 period employee @ day (one record)

emp_num  day_date   mission_in    mission_out   547    2015-4-1    15:00          21:30   547    2015-4-2    8:00           14:00 

in previous example if have procedure or method required procedure should take 2 parameters :

  • the date
  • the emp_num

in previous example should ('2015-4-1' ,547)

according explanation :

  • the main period (mission period) [a,b] second table : should 1 period in date employee

    [15:00,21:30]

  • the secondary period passed date ('2015-4-1') employee 2 sets of secondary periods (the worst case) first table

    the first set should contain 1 secondary period (or 0 periods) [08:00,16:00] second set contain many secondary periods (or 0 periods)

    [07:45,12:10],[12:45,17:24]

the output should [17:24,21:30] converted minutes

note

all day_date,mission_in,mission_out,work_st,work_end,check_in,check_out datetime fields put time in example simplification , want ignore date part except day_date because it's date calculate based on in addition emp_num.

enter image description here

i've updated answer data example , i'm adding example employee 248 uses case 2 , 5 graph.

--load example data emply 547 select convert(int, 547) emp_num,      convert(datetime, '2015-4-1') day_date,      convert(datetime, '2015-4-1 08:00') work_st,     convert(datetime, '2015-4-1 16:00') work_end,      convert(datetime, '2015-4-1 07:45') check_in,      convert(datetime, '2015-4-1 12:10') check_out,      'w' day_state #secondaryintervals insert #secondaryintervals select 547, '2015-4-1', '2015-4-1 08:00', '2015-4-1 16:00', '2015-4-1 12:45', '2015-4-1 17:24', 'w' insert #secondaryintervals select 547, '2015-4-2', '2015-4-2 00:00', '2015-4-2 00:00', '2015-4-2 07:11', '2015-4-2 13:11', 'e'  select convert(int, 547) emp_num,      convert(datetime, '2015-4-1') day_date,      convert(datetime, '2015-4-1 15:00') mission_in,     convert(datetime, '2015-4-1 21:30') mission_out #mainintervals insert #mainintervals select 547, '2015-4-2', '2015-4-2 8:00', '2015-4-2 14:00'  --load more example data employee 548 overlapping secondary intervals insert #secondaryintervals select 548, '2015-4-1', '2015-4-1 06:00', '2015-4-1 11:00', '2015-4-1 9:00', '2015-4-1 10:00', 'w' insert #secondaryintervals select 548, '2015-4-1', '2015-4-1 06:00', '2015-4-1 11:00', '2015-4-1 10:30', '2015-4-1 12:30', 'w' insert #secondaryintervals select 548, '2015-4-1', '2015-4-1 06:00', '2015-4-1 11:00', '2015-4-1 13:15', '2015-4-1 16:00', 'w'  insert #mainintervals select 548, '2015-4-1', '2015-4-1 8:00', '2015-4-1 14:00'  --populate offline table intervals in #secondaryintervals select      row_number() on (order emp_num, day_date, startdatetime, enddatetime) rownum,     emp_num,     day_date,     startdatetime,      enddatetime #offline      (select emp_num,         day_date,         work_st startdatetime,          work_end enddatetime     #secondaryintervals     day_state = 'w'     group emp_num,         day_date,         work_st,          work_end     union     select          emp_num,         day_date,         check_in startdatetime,          check_out enddatetime     #secondaryintervals     group emp_num,         day_date,         check_in,          check_out     ) secondaryintervals   --populate online table select      row_number() on (order emp_num, day_date, mission_in, mission_out) rownum,     emp_num,     day_date,     mission_in startdatetime,      mission_out enddatetime #online #mainintervals group emp_num,     day_date,     mission_in,     mission_out   ------------------------------- --find overlaping offline times ------------------------------- declare @finished tinyint set @finished = 0  while @finished = 0 begin     update #offline     set #offline.enddatetime = overlapenddates.enddatetime     #offline     join         (         select #offline.rownum,             max(overlap.enddatetime) enddatetime         #offline         join #offline overlap         on #offline.emp_num = overlap.emp_num             , #offline.day_date = overlap.day_date             , overlap.startdatetime between #offline.startdatetime , #offline.enddatetime             , #offline.rownum <= overlap.rownum         group #offline.rownum         ) overlapenddates     on #offline.rownum = overlapenddates.rownum      --remove online times inside of online times     delete #offline     #offline     join #offline overlap     on #offline.emp_num = overlap.emp_num         , #offline.day_date = overlap.day_date         , #offline.startdatetime between overlap.startdatetime , overlap.enddatetime         , #offline.enddatetime between overlap.startdatetime , overlap.enddatetime         , #offline.rownum > overlap.rownum      --look if there more chains left         if not exists(             select #offline.rownum,                 max(overlap.enddatetime) enddatetime             #offline             join #offline overlap             on #offline.emp_num = overlap.emp_num                 , #offline.day_date = overlap.day_date                 , overlap.startdatetime between #offline.startdatetime , #offline.enddatetime                 , #offline.rownum < overlap.rownum             group #offline.rownum             )         set @finished = 1 end  ------------------------------- --modify online times offline ranges -------------------------------  --delete online times inside offline range delete #online  #online join #offline on #online.emp_num = #offline.emp_num     , #online.day_date = #offline.day_date     , #online.startdatetime between #offline.startdatetime , #offline.enddatetime     , #online.enddatetime between #offline.startdatetime , #offline.enddatetime  --find online times offline range @ beginning update #online set #online.startdatetime = #offline.enddatetime #online join #offline on #online.emp_num = #offline.emp_num     , #online.day_date = #offline.day_date     , #online.startdatetime between #offline.startdatetime , #offline.enddatetime     , #online.enddatetime >= #offline.enddatetime  --find online times offline range @ end update #online set #online.enddatetime = #offline.startdatetime #online join #offline on #online.emp_num = #offline.emp_num     , #online.day_date = #offline.day_date     , #online.startdatetime <= #offline.startdatetime     , #online.enddatetime between #offline.startdatetime , #offline.enddatetime  --find online times offline range punched in middle select #online.rownum,      #offline.rownum offlinerow,     #offline.startdatetime,     #offline.enddatetime,     row_number() on (partition #online.rownum order #offline.rownum desc) offlineholenumber #offlineholes #online join #offline on #online.emp_num = #offline.emp_num     , #online.day_date = #offline.day_date     , #offline.startdatetime between #online.startdatetime , #online.enddatetime     , #offline.enddatetime between #online.startdatetime , #online.enddatetime  declare @holenumber integer select @holenumber = isnull(max(offlineholenumber),0) #offlineholes  --punch holes out of online times while @holenumber > 0 begin     insert #online      select         -1 rownum,         #online.emp_num,         #online.day_date,         #offlineholes.enddatetime startdatetime,         #online.enddatetime enddatetime     #online     join #offlineholes     on #online.rownum = #offlineholes.rownum     offlineholenumber = @holenumber      update #online     set #online.enddatetime = #offlineholes.startdatetime     #online     join #offlineholes     on #online.rownum = #offlineholes.rownum     offlineholenumber = @holenumber      set @holenumber=@holenumber-1 end  --output total hours select emp_num, day_date,      sum(datediff(second,startdatetime, enddatetime)) / 3600.0 totalhr,      sum(datediff(second,startdatetime, enddatetime)) / 60.0 totalmin #online group emp_num, day_date order 1, 2  --see how split online intervals select emp_num, day_date, startdatetime, enddatetime #online order 1, 2, 3, 4 

output is:

emp_num     day_date                totalhr                                 totalmin ----------- ----------------------- --------------------------------------- --------------------------------------- 547         2015-04-01 00:00:00.000 4.100000                                246.000000 547         2015-04-02 00:00:00.000 0.816666                                49.000000 548         2015-04-01 00:00:00.000 0.750000                                45.000000  (3 row(s) affected)  emp_num     day_date                startdatetime           enddatetime ----------- ----------------------- ----------------------- ----------------------- 547         2015-04-01 00:00:00.000 2015-04-01 17:24:00.000 2015-04-01 21:30:00.000 547         2015-04-02 00:00:00.000 2015-04-02 13:11:00.000 2015-04-02 14:00:00.000 548         2015-04-01 00:00:00.000 2015-04-01 12:30:00.000 2015-04-01 13:15:00.000  (3 row(s) affected) 

i left other answer posted because it's more generic in case else wants snag it. see added bounty question. let me know if there's specific answer doesn't satisfy , i'll try out. process thousands of intervals method , returns in few seconds.


Popular posts from this blog

html/hta mutiple file in audio player -

debugging - Reference - What does this error mean in PHP? -